tokio/runtime/runtime.rs
1use super::BOX_FUTURE_THRESHOLD;
2use crate::runtime::blocking::BlockingPool;
3use crate::runtime::scheduler::CurrentThread;
4use crate::runtime::{context, EnterGuard, Handle};
5use crate::task::JoinHandle;
6use crate::util::trace::SpawnMeta;
7
8use std::future::Future;
9use std::mem;
10use std::time::Duration;
11
12cfg_rt_multi_thread! {
13 use crate::runtime::Builder;
14 use crate::runtime::scheduler::MultiThread;
15}
16
17/// The Tokio runtime.
18///
19/// The runtime provides an I/O driver, task scheduler, [timer], and
20/// blocking pool, necessary for running asynchronous tasks.
21///
22/// Instances of `Runtime` can be created using [`new`], or [`Builder`].
23/// However, most users will use the [`#[tokio::main]`][main] annotation on
24/// their entry point instead.
25///
26/// See [module level][mod] documentation for more details.
27///
28/// # Shutdown
29///
30/// Shutting down the runtime is done by dropping the value, or calling
31/// [`shutdown_background`] or [`shutdown_timeout`].
32///
33/// Tasks spawned through [`Runtime::spawn`] keep running until they yield.
34/// Then they are dropped. They are not *guaranteed* to run to completion, but
35/// *might* do so if they do not yield until completion.
36///
37/// Blocking functions spawned through [`Runtime::spawn_blocking`] keep running
38/// until they return.
39///
40/// The thread initiating the shutdown blocks until all spawned work has been
41/// stopped. This can take an indefinite amount of time. The `Drop`
42/// implementation waits forever for this.
43///
44/// The [`shutdown_background`] and [`shutdown_timeout`] methods can be used if
45/// waiting forever is undesired. When the timeout is reached, spawned work that
46/// did not stop in time and threads running it are leaked. The work continues
47/// to run until one of the stopping conditions is fulfilled, but the thread
48/// initiating the shutdown is unblocked.
49///
50/// Once the runtime has been dropped, any outstanding I/O resources bound to
51/// it will no longer function. Calling any method on them will result in an
52/// error.
53///
54/// # Sharing
55///
56/// There are several ways to establish shared access to a Tokio runtime:
57///
58/// * Using an <code>[Arc]\<Runtime></code>.
59/// * Using a [`Handle`].
60/// * Entering the runtime context.
61///
62/// Using an <code>[Arc]\<Runtime></code> or [`Handle`] allows you to do various
63/// things with the runtime such as spawning new tasks or entering the runtime
64/// context. Both types can be cloned to create a new handle that allows access
65/// to the same runtime. By passing clones into different tasks or threads, you
66/// will be able to access the runtime from those tasks or threads.
67///
68/// The difference between <code>[Arc]\<Runtime></code> and [`Handle`] is that
69/// an <code>[Arc]\<Runtime></code> will prevent the runtime from shutting down,
70/// whereas a [`Handle`] does not prevent that. This is because shutdown of the
71/// runtime happens when the destructor of the `Runtime` object runs.
72///
73/// Calls to [`shutdown_background`] and [`shutdown_timeout`] require exclusive
74/// ownership of the `Runtime` type. When using an <code>[Arc]\<Runtime></code>,
75/// this can be achieved via [`Arc::try_unwrap`] when only one strong count
76/// reference is left over.
77///
78/// The runtime context is entered using the [`Runtime::enter`] or
79/// [`Handle::enter`] methods, which use a thread-local variable to store the
80/// current runtime. Whenever you are inside the runtime context, methods such
81/// as [`tokio::spawn`] will use the runtime whose context you are inside.
82///
83/// [timer]: crate::time
84/// [mod]: index.html
85/// [`new`]: method@Self::new
86/// [`Builder`]: struct@Builder
87/// [`Handle`]: struct@Handle
88/// [main]: macro@crate::main
89/// [`tokio::spawn`]: crate::spawn
90/// [`Arc::try_unwrap`]: std::sync::Arc::try_unwrap
91/// [Arc]: std::sync::Arc
92/// [`shutdown_background`]: method@Runtime::shutdown_background
93/// [`shutdown_timeout`]: method@Runtime::shutdown_timeout
94#[derive(Debug)]
95pub struct Runtime {
96 /// Task scheduler
97 scheduler: Scheduler,
98
99 /// Handle to runtime, also contains driver handles
100 handle: Handle,
101
102 /// Blocking pool handle, used to signal shutdown
103 blocking_pool: BlockingPool,
104}
105
106/// The flavor of a `Runtime`.
107///
108/// This is the return type for [`Handle::runtime_flavor`](crate::runtime::Handle::runtime_flavor()).
109#[derive(Debug, PartialEq, Eq)]
110#[non_exhaustive]
111pub enum RuntimeFlavor {
112 /// The flavor that executes all tasks on the current thread.
113 CurrentThread,
114 /// The flavor that executes tasks across multiple threads.
115 MultiThread,
116}
117
118/// The runtime scheduler is either a multi-thread or a current-thread executor.
119#[derive(Debug)]
120pub(super) enum Scheduler {
121 /// Execute all tasks on the current-thread.
122 CurrentThread(CurrentThread),
123
124 /// Execute tasks across multiple threads.
125 #[cfg(feature = "rt-multi-thread")]
126 MultiThread(MultiThread),
127}
128
129impl Runtime {
130 pub(super) fn from_parts(
131 scheduler: Scheduler,
132 handle: Handle,
133 blocking_pool: BlockingPool,
134 ) -> Runtime {
135 Runtime {
136 scheduler,
137 handle,
138 blocking_pool,
139 }
140 }
141
142 /// Creates a new runtime instance with default configuration values.
143 ///
144 /// This results in the multi threaded scheduler, I/O driver, and time driver being
145 /// initialized.
146 ///
147 /// Most applications will not need to call this function directly. Instead,
148 /// they will use the [`#[tokio::main]` attribute][main]. When a more complex
149 /// configuration is necessary, the [runtime builder] may be used.
150 ///
151 /// See [module level][mod] documentation for more details.
152 ///
153 /// # Examples
154 ///
155 /// Creating a new `Runtime` with default configuration values.
156 ///
157 /// ```
158 /// use tokio::runtime::Runtime;
159 ///
160 /// let rt = Runtime::new()
161 /// .unwrap();
162 ///
163 /// // Use the runtime...
164 /// ```
165 ///
166 /// [mod]: index.html
167 /// [main]: ../attr.main.html
168 /// [threaded scheduler]: index.html#threaded-scheduler
169 /// [runtime builder]: crate::runtime::Builder
170 #[cfg(feature = "rt-multi-thread")]
171 #[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))]
172 pub fn new() -> std::io::Result<Runtime> {
173 Builder::new_multi_thread().enable_all().build()
174 }
175
176 /// Returns a handle to the runtime's spawner.
177 ///
178 /// The returned handle can be used to spawn tasks that run on this runtime, and can
179 /// be cloned to allow moving the `Handle` to other threads.
180 ///
181 /// Calling [`Handle::block_on`] on a handle to a `current_thread` runtime is error-prone.
182 /// Refer to the documentation of [`Handle::block_on`] for more.
183 ///
184 /// # Examples
185 ///
186 /// ```
187 /// # #[cfg(not(target_family = "wasm"))]
188 /// # {
189 /// use tokio::runtime::Runtime;
190 ///
191 /// let rt = Runtime::new()
192 /// .unwrap();
193 ///
194 /// let handle = rt.handle();
195 ///
196 /// // Use the handle...
197 /// # }
198 /// ```
199 pub fn handle(&self) -> &Handle {
200 &self.handle
201 }
202
203 /// Spawns a future onto the Tokio runtime.
204 ///
205 /// This spawns the given future onto the runtime's executor, usually a
206 /// thread pool. The thread pool is then responsible for polling the future
207 /// until it completes.
208 ///
209 /// The provided future will start running in the background immediately
210 /// when `spawn` is called, even if you don't await the returned
211 /// `JoinHandle`.
212 ///
213 /// See [module level][mod] documentation for more details.
214 ///
215 /// [mod]: index.html
216 ///
217 /// # Examples
218 ///
219 /// ```
220 /// # #[cfg(not(target_family = "wasm"))]
221 /// # {
222 /// use tokio::runtime::Runtime;
223 ///
224 /// # fn dox() {
225 /// // Create the runtime
226 /// let rt = Runtime::new().unwrap();
227 ///
228 /// // Spawn a future onto the runtime
229 /// rt.spawn(async {
230 /// println!("now running on a worker thread");
231 /// });
232 /// # }
233 /// # }
234 /// ```
235 #[track_caller]
236 pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
237 where
238 F: Future + Send + 'static,
239 F::Output: Send + 'static,
240 {
241 let fut_size = mem::size_of::<F>();
242 if fut_size > BOX_FUTURE_THRESHOLD {
243 self.handle
244 .spawn_named(Box::pin(future), SpawnMeta::new_unnamed(fut_size))
245 } else {
246 self.handle
247 .spawn_named(future, SpawnMeta::new_unnamed(fut_size))
248 }
249 }
250
251 /// Runs the provided function on an executor dedicated to blocking operations.
252 ///
253 /// # Examples
254 ///
255 /// ```
256 /// # #[cfg(not(target_family = "wasm"))]
257 /// # {
258 /// use tokio::runtime::Runtime;
259 ///
260 /// # fn dox() {
261 /// // Create the runtime
262 /// let rt = Runtime::new().unwrap();
263 ///
264 /// // Spawn a blocking function onto the runtime
265 /// rt.spawn_blocking(|| {
266 /// println!("now running on a worker thread");
267 /// });
268 /// # }
269 /// # }
270 /// ```
271 #[track_caller]
272 pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R>
273 where
274 F: FnOnce() -> R + Send + 'static,
275 R: Send + 'static,
276 {
277 self.handle.spawn_blocking(func)
278 }
279
280 /// Runs a future to completion on the Tokio runtime. This is the
281 /// runtime's entry point.
282 ///
283 /// This runs the given future on the current thread, blocking until it is
284 /// complete, and yielding its resolved result. Any tasks or timers
285 /// which the future spawns internally will be executed on the runtime.
286 ///
287 /// # Non-worker future
288 ///
289 /// Note that the future required by this function does not run as a
290 /// worker. The expectation is that other tasks are spawned by the future here.
291 /// Awaiting on other futures from the future provided here will not
292 /// perform as fast as those spawned as workers.
293 ///
294 /// # Multi thread scheduler
295 ///
296 /// When the multi thread scheduler is used this will allow futures
297 /// to run within the io driver and timer context of the overall runtime.
298 ///
299 /// Any spawned tasks will continue running after `block_on` returns.
300 ///
301 /// # Current thread scheduler
302 ///
303 /// When the current thread scheduler is enabled `block_on`
304 /// can be called concurrently from multiple threads. The first call
305 /// will take ownership of the io and timer drivers. This means
306 /// other threads which do not own the drivers will hook into that one.
307 /// When the first `block_on` completes, other threads will be able to
308 /// "steal" the driver to allow continued execution of their futures.
309 ///
310 /// Any spawned tasks will be suspended after `block_on` returns. Calling
311 /// `block_on` again will resume previously spawned tasks.
312 ///
313 /// # Panics
314 ///
315 /// This function panics if the provided future panics, or if called within an
316 /// asynchronous execution context.
317 ///
318 /// # Examples
319 ///
320 /// ```no_run
321 /// # #[cfg(not(target_family = "wasm"))]
322 /// # {
323 /// use tokio::runtime::Runtime;
324 ///
325 /// // Create the runtime
326 /// let rt = Runtime::new().unwrap();
327 ///
328 /// // Execute the future, blocking the current thread until completion
329 /// rt.block_on(async {
330 /// println!("hello");
331 /// });
332 /// # }
333 /// ```
334 ///
335 /// [handle]: fn@Handle::block_on
336 #[track_caller]
337 pub fn block_on<F: Future>(&self, future: F) -> F::Output {
338 let fut_size = mem::size_of::<F>();
339 if fut_size > BOX_FUTURE_THRESHOLD {
340 self.block_on_inner(Box::pin(future), SpawnMeta::new_unnamed(fut_size))
341 } else {
342 self.block_on_inner(future, SpawnMeta::new_unnamed(fut_size))
343 }
344 }
345
346 #[track_caller]
347 fn block_on_inner<F: Future>(&self, future: F, _meta: SpawnMeta<'_>) -> F::Output {
348 #[cfg(all(
349 tokio_unstable,
350 feature = "taskdump",
351 feature = "rt",
352 target_os = "linux",
353 any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64")
354 ))]
355 let future = super::task::trace::Trace::root(future);
356
357 #[cfg(all(tokio_unstable, feature = "tracing"))]
358 let future = crate::util::trace::task(
359 future,
360 "block_on",
361 _meta,
362 crate::runtime::task::Id::next().as_u64(),
363 );
364
365 let _enter = self.enter();
366
367 match &self.scheduler {
368 Scheduler::CurrentThread(exec) => exec.block_on(&self.handle.inner, future),
369 #[cfg(feature = "rt-multi-thread")]
370 Scheduler::MultiThread(exec) => exec.block_on(&self.handle.inner, future),
371 }
372 }
373
374 /// Enters the runtime context.
375 ///
376 /// This allows you to construct types that must have an executor
377 /// available on creation such as [`Sleep`] or [`TcpStream`]. It will
378 /// also allow you to call methods such as [`tokio::spawn`].
379 ///
380 /// [`Sleep`]: struct@crate::time::Sleep
381 /// [`TcpStream`]: struct@crate::net::TcpStream
382 /// [`tokio::spawn`]: fn@crate::spawn
383 ///
384 /// # Example
385 ///
386 /// ```
387 /// # #[cfg(not(target_family = "wasm"))]
388 /// # {
389 /// use tokio::runtime::Runtime;
390 /// use tokio::task::JoinHandle;
391 ///
392 /// fn function_that_spawns(msg: String) -> JoinHandle<()> {
393 /// // Had we not used `rt.enter` below, this would panic.
394 /// tokio::spawn(async move {
395 /// println!("{}", msg);
396 /// })
397 /// }
398 ///
399 /// fn main() {
400 /// let rt = Runtime::new().unwrap();
401 ///
402 /// let s = "Hello World!".to_string();
403 ///
404 /// // By entering the context, we tie `tokio::spawn` to this executor.
405 /// let _guard = rt.enter();
406 /// let handle = function_that_spawns(s);
407 ///
408 /// // Wait for the task before we end the test.
409 /// rt.block_on(handle).unwrap();
410 /// }
411 /// # }
412 /// ```
413 pub fn enter(&self) -> EnterGuard<'_> {
414 self.handle.enter()
415 }
416
417 /// Shuts down the runtime, waiting for at most `duration` for all spawned
418 /// work to stop.
419 ///
420 /// See the [struct level documentation](Runtime#shutdown) for more details.
421 ///
422 /// # Examples
423 ///
424 /// ```
425 /// # #[cfg(not(target_family = "wasm"))]
426 /// # {
427 /// use tokio::runtime::Runtime;
428 /// use tokio::task;
429 ///
430 /// use std::thread;
431 /// use std::time::Duration;
432 ///
433 /// fn main() {
434 /// # if cfg!(miri) { return } // Miri reports error when main thread terminated without waiting all remaining threads.
435 /// let runtime = Runtime::new().unwrap();
436 ///
437 /// runtime.block_on(async move {
438 /// task::spawn_blocking(move || {
439 /// thread::sleep(Duration::from_secs(10_000));
440 /// });
441 /// });
442 ///
443 /// runtime.shutdown_timeout(Duration::from_millis(100));
444 /// }
445 /// # }
446 /// ```
447 pub fn shutdown_timeout(mut self, duration: Duration) {
448 // Wakeup and shutdown all the worker threads
449 self.handle.inner.shutdown();
450 self.blocking_pool.shutdown(Some(duration));
451 }
452
453 /// Shuts down the runtime, without waiting for any spawned work to stop.
454 ///
455 /// This can be useful if you want to drop a runtime from within another runtime.
456 /// Normally, dropping a runtime will block indefinitely for spawned blocking tasks
457 /// to complete, which would normally not be permitted within an asynchronous context.
458 /// By calling `shutdown_background()`, you can drop the runtime from such a context.
459 ///
460 /// Note however, that because we do not wait for any blocking tasks to complete, this
461 /// may result in a resource leak (in that any blocking tasks are still running until they
462 /// return.
463 ///
464 /// See the [struct level documentation](Runtime#shutdown) for more details.
465 ///
466 /// This function is equivalent to calling `shutdown_timeout(Duration::from_nanos(0))`.
467 ///
468 /// ```
469 /// # #[cfg(not(target_family = "wasm"))]
470 /// # {
471 /// use tokio::runtime::Runtime;
472 ///
473 /// fn main() {
474 /// let runtime = Runtime::new().unwrap();
475 ///
476 /// runtime.block_on(async move {
477 /// let inner_runtime = Runtime::new().unwrap();
478 /// // ...
479 /// inner_runtime.shutdown_background();
480 /// });
481 /// }
482 /// # }
483 /// ```
484 pub fn shutdown_background(self) {
485 self.shutdown_timeout(Duration::from_nanos(0));
486 }
487
488 /// Returns a view that lets you get information about how the runtime
489 /// is performing.
490 pub fn metrics(&self) -> crate::runtime::RuntimeMetrics {
491 self.handle.metrics()
492 }
493}
494
495impl Drop for Runtime {
496 fn drop(&mut self) {
497 match &mut self.scheduler {
498 Scheduler::CurrentThread(current_thread) => {
499 // This ensures that tasks spawned on the current-thread
500 // runtime are dropped inside the runtime's context.
501 let _guard = context::try_set_current(&self.handle.inner);
502 current_thread.shutdown(&self.handle.inner);
503 }
504 #[cfg(feature = "rt-multi-thread")]
505 Scheduler::MultiThread(multi_thread) => {
506 // The threaded scheduler drops its tasks on its worker threads, which is
507 // already in the runtime's context.
508 multi_thread.shutdown(&self.handle.inner);
509 }
510 }
511 }
512}
513
514impl std::panic::UnwindSafe for Runtime {}
515
516impl std::panic::RefUnwindSafe for Runtime {}