bitflags/traits.rs
1use core::{
2 fmt,
3 ops::{BitAnd, BitOr, BitXor, Not},
4};
5
6use crate::{
7 iter,
8 parser::{ParseError, ParseHex, WriteHex},
9};
10
11/**
12A defined flags value that may be named or unnamed.
13*/
14#[derive(Debug)]
15pub struct Flag<B> {
16 name: &'static str,
17 value: B,
18}
19
20impl<B> Flag<B> {
21 /**
22 Define a flag.
23
24 If `name` is non-empty then the flag is named, otherwise it's unnamed.
25 */
26 pub const fn new(name: &'static str, value: B) -> Self {
27 Flag { name, value }
28 }
29
30 /**
31 Get the name of this flag.
32
33 If the flag is unnamed then the returned string will be empty.
34 */
35 pub const fn name(&self) -> &'static str {
36 self.name
37 }
38
39 /**
40 Get the flags value of this flag.
41 */
42 pub const fn value(&self) -> &B {
43 &self.value
44 }
45
46 /**
47 Whether the flag is named.
48
49 If [`Flag::name`] returns a non-empty string then this method will return `true`.
50 */
51 pub const fn is_named(&self) -> bool {
52 !self.name.is_empty()
53 }
54
55 /**
56 Whether the flag is unnamed.
57
58 If [`Flag::name`] returns a non-empty string then this method will return `false`.
59 */
60 pub const fn is_unnamed(&self) -> bool {
61 self.name.is_empty()
62 }
63}
64
65/**
66A set of defined flags using a bits type as storage.
67
68## Implementing `Flags`
69
70This trait is implemented by the [`bitflags`](macro.bitflags.html) macro:
71
72```
73use bitflags::bitflags;
74
75bitflags! {
76 struct MyFlags: u8 {
77 const A = 1;
78 const B = 1 << 1;
79 }
80}
81```
82
83It can also be implemented manually:
84
85```
86use bitflags::{Flag, Flags};
87
88struct MyFlags(u8);
89
90impl Flags for MyFlags {
91 const FLAGS: &'static [Flag<Self>] = &[
92 Flag::new("A", MyFlags(1)),
93 Flag::new("B", MyFlags(1 << 1)),
94 ];
95
96 type Bits = u8;
97
98 fn from_bits_retain(bits: Self::Bits) -> Self {
99 MyFlags(bits)
100 }
101
102 fn bits(&self) -> Self::Bits {
103 self.0
104 }
105}
106```
107
108## Using `Flags`
109
110The `Flags` trait can be used generically to work with any flags types. In this example,
111we can count the number of defined named flags:
112
113```
114# use bitflags::{bitflags, Flags};
115fn defined_flags<F: Flags>() -> usize {
116 F::FLAGS.iter().filter(|f| f.is_named()).count()
117}
118
119bitflags! {
120 struct MyFlags: u8 {
121 const A = 1;
122 const B = 1 << 1;
123 const C = 1 << 2;
124
125 const _ = !0;
126 }
127}
128
129assert_eq!(3, defined_flags::<MyFlags>());
130```
131*/
132pub trait Flags: Sized + 'static {
133 /// The set of defined flags.
134 const FLAGS: &'static [Flag<Self>];
135
136 /// The underlying bits type.
137 type Bits: Bits;
138
139 /// Get a flags value with all bits unset.
140 fn empty() -> Self {
141 Self::from_bits_retain(Self::Bits::EMPTY)
142 }
143
144 /// Get a flags value with all known bits set.
145 fn all() -> Self {
146 let mut truncated = Self::Bits::EMPTY;
147
148 for flag in Self::FLAGS.iter() {
149 truncated = truncated | flag.value().bits();
150 }
151
152 Self::from_bits_retain(truncated)
153 }
154
155 /// This method will return `true` if any unknown bits are set.
156 fn contains_unknown_bits(&self) -> bool {
157 Self::all().bits() & self.bits() != self.bits()
158 }
159
160 /// Get the underlying bits value.
161 ///
162 /// The returned value is exactly the bits set in this flags value.
163 fn bits(&self) -> Self::Bits;
164
165 /// Convert from a bits value.
166 ///
167 /// This method will return `None` if any unknown bits are set.
168 fn from_bits(bits: Self::Bits) -> Option<Self> {
169 let truncated = Self::from_bits_truncate(bits);
170
171 if truncated.bits() == bits {
172 Some(truncated)
173 } else {
174 None
175 }
176 }
177
178 /// Convert from a bits value, unsetting any unknown bits.
179 fn from_bits_truncate(bits: Self::Bits) -> Self {
180 Self::from_bits_retain(bits & Self::all().bits())
181 }
182
183 /// Convert from a bits value exactly.
184 fn from_bits_retain(bits: Self::Bits) -> Self;
185
186 /// Get a flags value with the bits of a flag with the given name set.
187 ///
188 /// This method will return `None` if `name` is empty or doesn't
189 /// correspond to any named flag.
190 fn from_name(name: &str) -> Option<Self> {
191 // Don't parse empty names as empty flags
192 if name.is_empty() {
193 return None;
194 }
195
196 for flag in Self::FLAGS {
197 if flag.name() == name {
198 return Some(Self::from_bits_retain(flag.value().bits()));
199 }
200 }
201
202 None
203 }
204
205 /// Yield a set of contained flags values.
206 ///
207 /// Each yielded flags value will correspond to a defined named flag. Any unknown bits
208 /// will be yielded together as a final flags value.
209 fn iter(&self) -> iter::Iter<Self> {
210 iter::Iter::new(self)
211 }
212
213 /// Yield a set of contained named flags values.
214 ///
215 /// This method is like [`Flags::iter`], except only yields bits in contained named flags.
216 /// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
217 fn iter_names(&self) -> iter::IterNames<Self> {
218 iter::IterNames::new(self)
219 }
220
221 /// Yield a set of all named flags defined by [`Self::FLAGS`].
222 fn iter_defined_names() -> iter::IterDefinedNames<Self> {
223 iter::IterDefinedNames::new()
224 }
225
226 /// Whether all bits in this flags value are unset.
227 fn is_empty(&self) -> bool {
228 self.bits() == Self::Bits::EMPTY
229 }
230
231 /// Whether all known bits in this flags value are set.
232 fn is_all(&self) -> bool {
233 // NOTE: We check against `Self::all` here, not `Self::Bits::ALL`
234 // because the set of all flags may not use all bits
235 Self::all().bits() | self.bits() == self.bits()
236 }
237
238 /// Whether any set bits in a source flags value are also set in a target flags value.
239 fn intersects(&self, other: Self) -> bool
240 where
241 Self: Sized,
242 {
243 self.bits() & other.bits() != Self::Bits::EMPTY
244 }
245
246 /// Whether all set bits in a source flags value are also set in a target flags value.
247 fn contains(&self, other: Self) -> bool
248 where
249 Self: Sized,
250 {
251 self.bits() & other.bits() == other.bits()
252 }
253
254 /// Remove any unknown bits from the flags.
255 fn truncate(&mut self)
256 where
257 Self: Sized,
258 {
259 *self = Self::from_bits_truncate(self.bits());
260 }
261
262 /// The bitwise or (`|`) of the bits in two flags values.
263 fn insert(&mut self, other: Self)
264 where
265 Self: Sized,
266 {
267 *self = Self::from_bits_retain(self.bits()).union(other);
268 }
269
270 /// The intersection of a source flags value with the complement of a target flags value (`&!`).
271 ///
272 /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
273 /// `remove` won't truncate `other`, but the `!` operator will.
274 fn remove(&mut self, other: Self)
275 where
276 Self: Sized,
277 {
278 *self = Self::from_bits_retain(self.bits()).difference(other);
279 }
280
281 /// The bitwise exclusive-or (`^`) of the bits in two flags values.
282 fn toggle(&mut self, other: Self)
283 where
284 Self: Sized,
285 {
286 *self = Self::from_bits_retain(self.bits()).symmetric_difference(other);
287 }
288
289 /// Call [`Flags::insert`] when `value` is `true` or [`Flags::remove`] when `value` is `false`.
290 fn set(&mut self, other: Self, value: bool)
291 where
292 Self: Sized,
293 {
294 if value {
295 self.insert(other);
296 } else {
297 self.remove(other);
298 }
299 }
300
301 /// Unsets all bits in the flags.
302 fn clear(&mut self)
303 where
304 Self: Sized,
305 {
306 *self = Self::empty();
307 }
308
309 /// The bitwise and (`&`) of the bits in two flags values.
310 #[must_use]
311 fn intersection(self, other: Self) -> Self {
312 Self::from_bits_retain(self.bits() & other.bits())
313 }
314
315 /// The bitwise or (`|`) of the bits in two flags values.
316 #[must_use]
317 fn union(self, other: Self) -> Self {
318 Self::from_bits_retain(self.bits() | other.bits())
319 }
320
321 /// The intersection of a source flags value with the complement of a target flags value (`&!`).
322 ///
323 /// This method is not equivalent to `self & !other` when `other` has unknown bits set.
324 /// `difference` won't truncate `other`, but the `!` operator will.
325 #[must_use]
326 fn difference(self, other: Self) -> Self {
327 Self::from_bits_retain(self.bits() & !other.bits())
328 }
329
330 /// The bitwise exclusive-or (`^`) of the bits in two flags values.
331 #[must_use]
332 fn symmetric_difference(self, other: Self) -> Self {
333 Self::from_bits_retain(self.bits() ^ other.bits())
334 }
335
336 /// The bitwise negation (`!`) of the bits in a flags value, truncating the result.
337 #[must_use]
338 fn complement(self) -> Self {
339 Self::from_bits_truncate(!self.bits())
340 }
341}
342
343/**
344A bits type that can be used as storage for a flags type.
345*/
346pub trait Bits:
347 Clone
348 + Copy
349 + PartialEq
350 + BitAnd<Output = Self>
351 + BitOr<Output = Self>
352 + BitXor<Output = Self>
353 + Not<Output = Self>
354 + Sized
355 + 'static
356{
357 /// A value with all bits unset.
358 const EMPTY: Self;
359
360 /// A value with all bits set.
361 const ALL: Self;
362}
363
364// Not re-exported: prevent custom `Bits` impls being used in the `bitflags!` macro,
365// or they may fail to compile based on crate features
366pub trait Primitive {}
367
368macro_rules! impl_bits {
369 ($($u:ty, $i:ty,)*) => {
370 $(
371 impl Bits for $u {
372 const EMPTY: $u = 0;
373 const ALL: $u = <$u>::MAX;
374 }
375
376 impl Bits for $i {
377 const EMPTY: $i = 0;
378 const ALL: $i = <$u>::MAX as $i;
379 }
380
381 impl ParseHex for $u {
382 fn parse_hex(input: &str) -> Result<Self, ParseError> {
383 <$u>::from_str_radix(input, 16).map_err(|_| ParseError::invalid_hex_flag(input))
384 }
385 }
386
387 impl ParseHex for $i {
388 fn parse_hex(input: &str) -> Result<Self, ParseError> {
389 <$i>::from_str_radix(input, 16).map_err(|_| ParseError::invalid_hex_flag(input))
390 }
391 }
392
393 impl WriteHex for $u {
394 fn write_hex<W: fmt::Write>(&self, mut writer: W) -> fmt::Result {
395 write!(writer, "{:x}", self)
396 }
397 }
398
399 impl WriteHex for $i {
400 fn write_hex<W: fmt::Write>(&self, mut writer: W) -> fmt::Result {
401 write!(writer, "{:x}", self)
402 }
403 }
404
405 impl Primitive for $i {}
406 impl Primitive for $u {}
407 )*
408 }
409}
410
411impl_bits! {
412 u8, i8,
413 u16, i16,
414 u32, i32,
415 u64, i64,
416 u128, i128,
417 usize, isize,
418}
419
420/// A trait for referencing the `bitflags`-owned internal type
421/// without exposing it publicly.
422pub trait PublicFlags {
423 /// The type of the underlying storage.
424 type Primitive: Primitive;
425
426 /// The type of the internal field on the generated flags type.
427 type Internal;
428}
429
430#[doc(hidden)]
431#[deprecated(note = "use the `Flags` trait instead")]
432pub trait BitFlags: ImplementedByBitFlagsMacro + Flags {
433 /// An iterator over enabled flags in an instance of the type.
434 type Iter: Iterator<Item = Self>;
435
436 /// An iterator over the raw names and bits for enabled flags in an instance of the type.
437 type IterNames: Iterator<Item = (&'static str, Self)>;
438}
439
440#[allow(deprecated)]
441impl<B: Flags> BitFlags for B {
442 type Iter = iter::Iter<Self>;
443 type IterNames = iter::IterNames<Self>;
444}
445
446impl<B: Flags> ImplementedByBitFlagsMacro for B {}
447
448/// A marker trait that signals that an implementation of `BitFlags` came from the `bitflags!` macro.
449///
450/// There's nothing stopping an end-user from implementing this trait, but we don't guarantee their
451/// manual implementations won't break between non-breaking releases.
452#[doc(hidden)]
453pub trait ImplementedByBitFlagsMacro {}
454
455pub(crate) mod __private {
456 pub use super::{ImplementedByBitFlagsMacro, PublicFlags};
457}